skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tamnanloo, Javad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Surface tension is a critical property that influences polymer behavior at interfaces and affects applications ranging from coatings to biomedical devices. Traditional experimental methods for measuring polymer surface tension are time-consuming, costly, and sensitive to environmental conditions. Computational approaches such as molecular dynamics (MD) simulations are valuable but computationally intensive, especially for polymers with long chains. This study investigates the use of machine learning (ML) techniques to predict polymer surface tension using different levels of molecular representation, focusing on multilinear regression (MLR), random forest (RF), and graph neural networks (GNNs). A data set of 317 homopolymers collected from the PolyInfo database is used to train and evaluate these models. Descriptors are derived at various levels of complexity, ranging from manually calculated features to graph-based representations. The GNN approach captures the intrinsic connectivity of polymer structures, while the MLR and RF models rely on manually crafted descriptors. The performance of these models is compared with experimental data, with the GNN model demonstrating superior accuracy due to its ability to directly learn from molecular graphs. Our results show that GNNs can better capture complex nonlinear relationships in polymer structures than traditional descriptorbased methods, suggesting their significant potential for accelerating polymer design and development. The study also includes validation of model predictions against molecular dynamics simulations, highlighting the potential of GNNs to accurately model polymer interfacial properties. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  2. Using an innovative molecular dynamics approach, we observed the case II diffusion behavior of toluene, acetone, and their mixture diffusing within a glassy polystyrene film. 
    more » « less